seta

30 postagens no blog

Engenheiro Eletricista. Formado em Engenharia Elétrica pelo Centro de Estudos Superiores de Maceió (CESMAC-FACET). Pós-graduado em Gestão de Manutenção pela União de Faculdades de Alagoas (UNIFAL/FIC). Pós-graduando no MBA em Gerenciamento de Projetos pela Fundação Getúlio Vargas-RJ (FGV-RJ). Membro do Comitê Brasileiro de Eletricidade (COBEI/CB-03). Foi Professor Substituto da cadeira de Conversão de Energia II do Curso de Engenharia Elétrica (CESMAC-FACET). Ampla experiência no Brasil e no Exterior (Angola-África) na área de Engenharia Elétrica e Energia (Obras, Projetos, Engenharia e Manutenção). É Sócio-Gerente da JM Engenharia Ltda.

NR10 | Segurança e Eletricidade

17/10/2017 11:28

A NR10 (Norma Regulamentadora 10) estabelece as mínimas condições de trabalho a trabalhadores que possam interagir com instalações elétricas e serviços com eletricidade de alta tensão. Ela abrange qualquer trabalho dessa natureza em todas as etapas de um projeto, construção, montagem, operação, manutenção de instalações elétricas e outros trabalhos relacionados. A NR10 assume intervenções como medidas preventivas para controlar riscos elétricos, utilizando medidas de análise de risco para garantir a segurança e saúde do trabalho. Entre essas medidas, constam esquemas uni filiares de instalações elétricas atualizados com as especificações do sistema de aterramento e outros equipamentos. Segundo a NR10, estabelecimentos com carga superior a 75 kW devem constituir e manter o Prontuário de Instalações Elétricas, contendo, no mínimo:

  • CONJUNTO DE PROCEDIMENTOS E INSTRUÇÕES TÉCNICAS E ADMINISTRATIVAS DE SEGURANÇA E SAÚDE, IMPLANTADAS E RELACIONADAS À NR10.

  • DESCRIÇÃO DAS MEDIDAS DE CONTROLE EXISTENTES.

  • DOCUMENTAÇÃO DAS INSPEÇÕES E MEDIÇÕES DO SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS E ATERRAMENTOS ELÉTRICOS.

  • ESPECIFICAÇÃO DOS EQUIPAMENTOS DE PROTEÇÃO COLETIVA E INDIVIDUAL E O FERRAMENTAL, APLICÁVEIS CONFORME DETERMINA A NR10.

  • DOCUMENTAÇÃO QUE COMPROVE QUALIFICAÇÃO, HABILITAÇÃO, CAPACITAÇÃO, AUTORIZAÇÃO DOS TRABALHADORES E DOS TREINAMENTOS REALIZADOS.

  • RESULTADOS DOS TESTES DE ISOLAÇÃO ELÉTRICA REALIZADOS EM EQUIPAMENTOS DE PROTEÇÃO INDIVIDUAL (EPI) E COLETIVA (EPC).

  • CERTIFICAÇÕES DOS EQUIPAMENTOS E MATERIAIS ELÉTRICOS EM ÁREAS CLASSIFICADAS.

  • RELATÓRIO TÉCNICO DAS INSPEÇÕES ATUALIZADAS COM RECOMENDAÇÕES, CRONOGRAMAS DE ADEQUAÇÕES.

Segundo a NR10, empresas que operam em instalações ou equipamentos integrantes do sistema elétrico de potência devem acrescentar ao prontuário a descrição dos procedimentos para emergências e as certificações dos equipamentos de proteção coletiva e individual. O Prontuário de Instalações Elétricas deve ser organizado e atualizado pelo empregador ou designado pela empresa, estando à disposição dos trabalhadores envolvidos nas instalações e serviços em eletricidade. Os documentos técnicos previstos no Prontuário de Instalações Elétricas devem ser elaborados por profissional legalmente habilitado.

NR10: Medidas de Proteção Coletiva

Em todos os serviços executados em instalações elétricas devem ser previstas e adotadas como prioridade medidas de proteção coletiva, mediante procedimentos, às atividades a serem desenvolvidas, de forma a garantir a segurança e a saúde dos trabalhadores. As medidas de proteção coletiva compreendem, prioritariamente, a desenergização elétrica conforme estabelece a NR10 e, na sua impossibilidade, o emprego de tensão de segurança. Se isso não for possível, devem ser utilizadas outras medidas de proteção coletiva, como:

  • ISOLAÇÃO DAS PARTES VIVAS
  • OBSTÁCULOS
  • BARREIRAS
  • SINALIZAÇÃO
  • SISTEMA DE SECCIONAMENTO AUTOMÁTICO DE ALIMENTAÇÃO
  • BLOQUEIO DO RELIGAMENTO AUTOMÁTICO.

O aterramento das instalações elétricas deve ser executado conforme regulamentação estabelecida pelos órgãos competentes e, na ausência desta, deve atender às Normas Internacionais vigentes.

NR10: Medidas de Proteção Individual

Quando as medidas de proteção coletiva forem inviáveis ou insuficientes para controlar os riscos em trabalhos em instalações elétricas, devem ser adotados equipamentos de proteção individual (EPIs) específicos e adequados às atividades desenvolvidas, de acordo com a NR6. As vestimentas de trabalho devem ser adequadas às atividades, devendo contemplar a condutibilidade, inflamabilidade e influências eletromagnéticas. Seguindo a NR10, é vedado o uso de peças pessoais nos trabalhos com instalações elétricas ou em suas proximidades.

seta

Como Calcular a Velocidade do Motor Elétrico

10/10/2017 08:18

Este assunto motor elétrico é sempre bom esta sendo atualizados e reforçando alguns pontos mais cruciais para os profissionais de elétrica.

Quando você vai fazer a instalação de um motor é essencial que você saiba fazer o calculo do escorregamento, este fator é muito crucial para o processo industrial, isto é, o local onde depende do uso destes motores. Imagine que você vai instalar ou dar a manutenção em uma máquina que rotula garrafas pets, sua velocidade deve ser calculada com os mínimos detalhes e o maior cuidado do mundo, isso por que, deve ser retirado da maquina o máximo de proveito, para que assim seu trabalho auxilie na produção dos rótulos.

Cálculos do motor

Ante de começarmos a falar sobre o escoamento, vamos dar uma relembrada sobre os conceitos de energia e potência mecânica e elétrica. Os dois aspectos citados faz toda a diferença quando o assunto é calcular o escoamento e a velocidade de seu motor.

Para começarmos, vamos relembrar um pouco da elétrica, o que significa a energia deve estar na ponta da língua de qualquer eletricista, portanto a potência é a correlação entre a tensão e a corrente elétrica, mas cada um possui a sua formula especifica e diferente da visão mecânica.

Para entendermos melhor o que significa a energia e a potência mecânica e porque eles são importantes para a mecânica vou dar uma explicação mais direta, bom, a energia em mecânica é a capacidade em que o corpo faz seu trabalho ou então desenvolve uma força, já a potência, consiste na velocidade em que a energia é aplicada ou consumida e cada item tem a suas próprias formula.

O fator que necessita do escorregamento é quando desejamos saber a velocidade para a sincronia do motor(ns), esta velocidade é a velocidade que é estabelecida pelo campo girante, este cálculo consiste na multiplicação da frequência por uma constante de 120 dividido números de polos.

Por exemplo, você tem um motor que possui cerca de 5 polos, assim de acordo com a formula ficaria, 120/5= 24 ns.

Para os motores gaiola de esquilo, ou assíncronos a formula base é a mesma, porém, existe a necessidade de multiplicar o resultado por 1 metro S, esse cálculo nos traz a rotação do eixo do motor sob carga nominal.

Escorregamento

Existem alguns fatores que fazem com que a velocidade do motor deixa de ser exatamente aquela que ele esta projetando para a estrega, isto é, as velocidades reais do campo girante magnético como sabem, esta velocidade poderá variar ao aplicar uma carga mecânica.

Todos os motores elétricos possuem uma diferença natural entre as velocidades do campo magnético do motor contra a velocidade real do rotor, esse fenômeno da perda de velocidade consiste no famoso nome “Escorregamento”, e todos os fabricantes são obrigados a fornecerem este valor e com isso cada fabricante possui um valor de escorregamento. Este na maioria dos fabricantes é fornecido pelos fabricantes em porcentagem.

Podemos ainda poder calcular esse escorregamento, o conceito de escorregamento consiste na diferença entre a velocidade do rotor (n) e a velocidade do campo girante magnético (ns). Um ponto que deve tomar nota é em questão ao motor vazio, isto é, não possui carga, nesta situação a rotação é praticamente a síncrona, por definição, podemos falar que o escorregamento diminui com o aumento da potência. Assim, se formos jogar na formula ficaria:

S% = 100 * (ns – n) /ns

seta

Adequação das Instalações Elétricas às Novas Diretrizes da Norma Regulamentadora nº 10

26/09/2017 12:45

Caros leitores,

abaixo disponibilizo o link com um Artigo Técnico que publiquei recentemente na Revista Lumière Electric:

https://www.yumpu.com/pt/embed/view/azkq9V0dFG6BxsfO

O artigo está nas páginas 50 a 53.

Espero que seja bem útil aos leitores.

Forte abraço,

João Macário Netto

Engenheiro Eletricista

CREA 6047D/AL

 

 

 

seta

Estudando o funcionamento dos Motores de Indução Trifásicos

05/09/2017 09:27

Histórico e Funcionamento da Máquina de Indução Trifásica

As máquinas revolucionaram o mundo, trazendo modernidade quando utilizadas na indústria. Um inventor austríaco chamado Nikola Tesla, resolveu em torno de 1880 estudar o campo girante aplicando sua teoria sobre ele. Com isso surgiu a máquina de indução (modelo particular das máquinas de corrente alternada), sendo esta financiada originalmente por George Westinghouse. Tal descoberta impulsionou a Revolução Industrial, tornando-se o principal tipo de conversor eletromecânico utilizado devido ao sistema de alimentação encontrado com maior frequência ser em CA ou corrente alternada (por exemplo, a rede elétrica de fornecimento que abastece nossas residências). Significa portanto que essa máquina converte energia elétrica em energia mecânica, princípio de funcionamento do motor, o que justifica sua utilização em diversas aplicações.

Podemos citar inúmeras vantagens relativas aos motores de indução. Estes costumam ser empregados nas situações em que se verificam potências pequenas ou médias, até mesmo quando a variação de velocidade não for necessária. Também chamados motores assíncronos, eles são robustos, possuem custos de produção e manutenção pequenos além de vida útil longa. Exemplos de aplicação: ventiladores, compressores, elevadores, bombas, etc.

Tipos de Motores de indução (Assíncronos)

Os motores de indução variam de acordo com sua constituição básica. Formados essencialmente por um estator (parte fixa que recebe a alimentação da rede elétrica em seus condutores) e um rotor (parte girante que está ligada ao eixo o qual aciona uma carga mecânica, sob o efeito do campo magnético produzido pela alimentação das bobinas de armadura ou do estator).

Os tipos de motores de indução conhecidos são: rotor em gaiola “bifásico” e rotor bobinado (anéis). Ou seja, essa classificação varia segundo a forma que assume a peça conectada ao eixo girante (na verdade o rotor) e como estejam distribuídas suas bobinas.

Rotor em gaiola de esquilo (bifásico): Esse rotor apresenta um núcleo ferromagnético laminado com ranhuras em que se encaixam as barras condutoras que o integram, sendo estas curto-circuitadas por anéis coletores nas extremidades. Podem ser monofásicos (exigem dispositivo de partida, sendo o conjugado motor nulo em condições iniciais de funcionamento) e trifásicos que por serem mais práticos, costumam ser utilizados com maior frequência.

Rotor Bobinado (anéis): Motores trifásicos cujas bobinas a eles associadas estão conectadas a uma resistência variável e trifásica (ligação estrela ou Y), pois a corrente de partida é alta e deve ser controlada. Sendo a resistência variável inicialmente o seu valor é máximo, passando a diminuir com o movimento do rotor até atingir a plena carga (condição em que é estabelecido o curto-circuito e essa resistência torna-se nula).

Fonte: Portal do Eletricista

 

seta

Importância do Aterramento Elétrico nas Instalações Elétricas -Parte 2

04/09/2017 10:51

Malha de Aterramento

– Indicada para locais que possuam solo extremamente seco;

– O eletrodo utilizado para o aterramento neste modelo estende-se por toda a área de construção, devendo ser instalado antes da montagem do contra-piso no prédio;

– Esse sistema constituído de cobre sendo material integrante da malha, possui janelas internas que são espaçamentos entre pontos (reticulados) conforme a aplicação específica;

– Utilizado em estúdios de sonorização, mesmo tendo o solo uma boa resistência.

Estruturas Metálicas

– Nas construções, as ferragens das estruturas podem ser utilizadas como eletrodos de aterramento elétrico;

– Cuidados devem ser tomados quando for utilizada essa opção, procurando evitar riscos à pessoas no contato com superfícies que contenham internamente tais componentes nas instalações em particular.

Dimensionamento e Ligação do Condutor de Proteção

São vários fatores que nos permitem obter uma boa resistência de aterramento, para que tal sistema funcione de modo a provê a segurança básica e adequada de qualquer instalação elétrica. Vimos que as hastes utilizadas e as condições do solo em que estarão fincadas representam fatores úteis na avaliação da resistência obtida. Mas não apenas isso, precisamos dimensionar a bitola do fio terra e definir as conexões a serem estabelecidas entre ele e as referidas hastes.

O fator que especifica a bitola do condutor de proteção a ser empregado é a bitola dos fios alimentadores nos circuitos elétricos (ou fases). Observe a regra definida pela NBR 5410 que também especifica relação entre tamanhos de fios em instalações elétricas de baixa tensão:

Se o Condutor Fase tiver diâmetro inferior a 35mm2, ou seja Sf < 35mm2, então SPE = 16mm2.

Se o Condutor Fase tiver diâmetro igual ou superior a 35mm2, ou seja Sf ≥ 35mm2 então SPE = Sf / 2, correspondendo à metade do valor de bitola que identifica o condutor fase.

Simbologia:

 Sf : Bitola do condutor Fase

SPE : Bitola do fio terra (Condutor de Proteção)

Métodos de Ligação do Condutor de Proteção

Existem dois métodos pelos quais podemos ligar o condutor de proteção às hastes de aterramento. O primeiro deles consiste em soldar o fio terra na haste evitando aumento da resistência por oxidação de contato e o segundo consiste na utilização de anéis contendo parafusos aos quais devem ser engastados os condutores PE. Nesse último caso é recomendável que a conexão fique dentro de uma caixa de inspeção acima do solo.

 Medição do Aterramento

O instrumento utilizado pra medir a resistência de aterramento chama-se terrômetro. Ele é composto de duas hastes de referência que formam entre si uma resistência, sendo que ela provoca uma queda de tensão ao conduzir cargas pela terra, somando-se à resistência formada entre essa disposição e a haste de aterramento. O valor dessa queda de tensão obtida é que calibra o mostrador para que esse possa exibir o valor de resistência ôhmica do fio terra.

Na prática esse equipamento não é muito utilizado por ser inviável, já que requer locais apropriados para instalar as hastes de referência.

Existe um método alternativo em que não precisamos medir propriamente a resistência, apenas fazemos uma estimativa do valor. Nele, ligamos um dos pólos da lâmpada a um condutor fase qualquer da instalação e o outro a haste de terra. A resistência será menor quanto mais próximo do normal for o brilho da lâmpada.

Utilizando um amperímetro, o valor de corrente medido deve ultrapassar 600 mA, para uma rede elétrica cuja tensão é de 127 V* ou 220 V* fase-neutro (sendo a tensão nominal da lâmpada adaptada a ela) e a potência da lâmpada corresponde a 100 W*

*Valores adotados como referência para maior precisão na leitura

Utilizando um voltímetro em escala AC, mede-se a tensão da rede fase-neutro. Em seguida liga-se uma lâmpada de 127 V ou 220V – 60 W aproximadamente através de seus pólos a um condutor fase e ao terra, aonde o valor de tensão registrado não pode ser inferior a 8% da tensão nominal da rede elétrica.

Conclusão

O aterramento deve estar presente como fator de extrema necessidade em instalações elétricas prediais. Esse sistema garante a segurança em termos de utilização das cargas e evita problemas graves que possam ocasionar transtornos a vida de pessoas. Essa publicação tem o objetivo básico de informar sobre o método de proteção adicional mencionado e avaliado em seus principais aspectos. Contudo o assunto exposto é bastante complexo, servindo apenas como referência inicial a ser consultada. Procure investigar todas as nuances que definem o modo adequado à realização do seu sistema de aterramento, nunca esquecendo de consultar a norma técnica da ABNT NBR 5410 e emitir laudos técnicos além de toda documentação propícia à garantia de um serviço praticado segundo as especificações apropriadas.

seta

Primeira Edição © 2011